14 research outputs found

    Two-link lower limb exoskeleton model control enhancement using computed torque

    Get PDF
    Robotic technology has recently been used to help stroke patients with gait and balance rehabilitation. Rehabilitation robots such as gait trainers are designed to assist patients in systematic, repetitive training sessions to speed up their recovery from injuries. Several control algorithms are commonly used on exoskeletons, such as proportional, integral and derivative (PID) as linear control. However, linear control has several disadvantages when applied to the exoskeleton, which has the problem of uncertainties such as load and stiffness variations of the patient’s lower limb. To improve the lower limb exoskeleton for the gait trainer, the computed torque controller (CTC) is introduced as a control approach in this study. When the dynamic properties of the system are only partially known, the computed torque controller is an essential nonlinear controller. A mathematical model forms the foundation of this controller. The suggested control approach’s effectiveness is evaluated using a model or scaled-down variation of the method. The performance of the suggested calculated torque control technique is then evaluated and contrasted with that of the PID controller. Because of this, the PID controller’s steady-state error in the downward direction can reach 5.6%, but the CTC can lower it to 2.125%

    Controlling a knee CPM machine using PID and iterative learning control algorithm

    Get PDF
    A conventional continuous passive motion (CPM) machine uses simple controller such as On/Off controller. Some better CPMs use PID controller. These kind of CPMs can not distinguish load different due to the different size of the patient leg. This may cause the CPM no longer follow the trajectory or the angle commands. Meanwhile, each patient may have different scenario of therapy from the others. When progress on the patient exists, the range of the flexion may be increased step by step. Therefore, the treatment can be different in term of the range of flexion from time to time. This paper proposes CPM with hybrid proportional integral derivative (PID) and iterative learning controller (ILC). The system has capability in learning the trajectory tracking. Therefore, the CPM will be able to follow any load or trajectory changes applied to it. The more accurate CPM machine can follow the trajectory command, the better its performance for the treatment. The experiment showed that the system was stable due to the PID controller. The tracking performance also improved with the ILC even there exist some disturbances

    Control of robot-assisted gait trainer using hybrid proportional integral derivative and iterative learning control

    Get PDF
    An inexpensive exoskeleton of the lower limb was designed and developed in this study. It can be used as a gait trainer for persons with lower limb problems. It plays an essential role in lower limb rehabilitation and aid for patients, and it can help them improve their physical condition. This paper proposes a hybrid controller for regulating the lower limb exoskeleton of a robot-assisted gait trainer that uses a proportional integral and derivative (PID) controller combined with an iterative learning controller (ILC). The direct current motors at the hip and knee joints are controlled by a microcontroller that uses a preset pattern for the trajectories. It can learn how to monitor a trajectory. If the trajectory or load is changed, it will be able to follow the change. The experiment showed that the PID controller had the smallest overshoot, and settling time, and was responsible for system stability. Even if there are occasional interruptions, the tracking performance improves with the ILC

    Trolls: a novel low-cost controlling system platform for walk-behind tractor

    Get PDF
    A novel low-cost controlling system platform for walk-behind hand tractors (Quick G3000 and G1000) was designed and developed to solve the fatigue problem faced by farmers when ploughing the rice field. This platform is dedicated to designing and manufacturing mechanical, electrical, and software components. The tractor was modified and added with an embedded control system that functioned as the slave, while the direction of the tractor movement was controlled remotely by humans through Bluetooth communication with the smartphone application as the master. Several servos and direct currents (DCs) were used as the actuator to move some levers and clutches instead of the tractor to make it remotely controllable. This system has been directly tested in the paddy farming land through two tractors: Quick G3000 and G1000. The testing results showed that this system could be used within more or less six hours; there is a cost-efficiency of 21.74% and 84.62% battery usage efficiency. More efficient mechanics caused this cost efficiency, and the reduction in electronic devices affects battery efficiency. A low-cost platform for controlling walk-behind tractors has been successfully developed; this platform assists farmers in ploughing their fields

    Autonomous open-source electric wheelchair platform with internet-of-things and proportional-integral-derivative control

    Get PDF
    This study aims to improve the working model of autonomous wheelchair navigation for disabled patients using the internet of things (IoT). A proportional-integral-derivative (PID) control algorithm is applied to the autonomous wheelchair to control movement based on position coordinates and orientation provided by the global positioning system (GPS) and digital compass sensor. This system is controlled through the IoT system, which can be operated from a web browser. Autonomous wheelchairs are handled using a waypoint algorithm; ESP8266 is used as a microcontroller unit that acts as a bridge for transmitting data obtained by sensors and controlling the direct current (DC) motors as actuators. The proposed system and the autonomous wheelchair performance gave satisfactory results with a longitude and latitude error of 1.1 meters to 4.5 meters. This error is obtained because of the limitations of GPS with the type of Ublox Neo-M8N. As a starting point for further research, a mathematical model of a wheelchair was created, and pure pursuit control algorithm was used to simulate the movement. An open-source autonomous IoT platform for electric wheelchairs has been successfully created; this platform can help nurses and caretakers

    Modeling, simulation and control of high speed nonlinear hydraulic servo system

    No full text
    Abstract. The goal of this paper is to present for modeling a Hydraulic Servo System (HSS). This work describes the design and implementation of a control system for the operation of a hydraulic mini press machine. First, we develop mathematical models for obtaining the system responses. These responses of the servo valve, and open loop HSS are given step and sinusoidal inputs. While, the closed loop system is based on linearized model of feedback regulator of PD controller for high-speed control. All models and controllers are simulated using MATLAB and SIMULINK computer program. An experimental set-up is constructed, which consists of micro-controller PIC 18F458 as controller, a servo valve driven HSS, and feedback elements. The result shows that, HSS can provide higher speed of response with fast motion of the plant and its performance is compared with three alternative high speed nonlinear HSS. It is shown that, proposed method is superior to existing ones

    RIFIS: A Novel Rice Field Sidewalk Detection Dataset for Walk-Behind Hand Tractor

    No full text
    Rice field sidewalk (RIFIS) identification plays a crucial role in enhancing the performance of agricultural computer applications, especially for rice farming, by dividing the image into areas of rice fields to be ploughed and the areas outside of rice fields. This division isolates the desired area and reduces computational costs for processing RIFIS detection in the automation of ploughing fields using hand tractors. Testing and evaluating the performance of the RIFIS detection method requires a collection of image data that includes various features of the rice field environment. However, the available agricultural image datasets focus only on rice plants and their diseases; a dataset that explicitly provides RIFIS imagery has not been found. This study presents an RIFIS image dataset that addresses this deficiency by including specific linear characteristics. In Bali, Indonesia, two geographically separated rice fields were selected. The initial data collected were from several videos, which were then converted into image sequences. Manual RIFIS annotations were applied to the image. This research produced a dataset consisting of 970 high-definition RGB images (1920 × 1080 pixels) and corresponding annotations. This dataset has a combination of 19 different features. By utilizing our dataset for detection, it can be applied not only for the time of rice planting but also for the time of rice harvest, and our dataset can be used for a variety of applications throughout the entire year

    System design for inverted pendulum using LQR control via IoT

    Get PDF
    This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed
    corecore